ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «БАЛТИЙСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ ИМЕНИ ИММАНУИЛА КАНТА»

Утверждены Решением Ученого совета БФУ им. И. Канта (протокол № 2022 года)

Председатель Ученого советь БФУ им. И. Канта Ректор А.А. Федоров

Дополнительная общеобразовательная общеразвивающая программа технической направленности «Оптика лазеров»

Возраст обучающихся: 13-18 лет Срок реализации: 8 месяцев

Автор-составитель: куратор направления инженернотехнической подготовки ЦРСКД БФУ им. И. Канта Савина Ю. Э.

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Направленность (профиль) программы

Дополнительная общеразвивающая программа «Оптика лазеров» имеет техническую направленность.

Актуальность программы

Лазерные технологии являются одним из наиболее перспективных и динамично развивающихся направлений научно-технического прогресса. По темпам роста мировой рынок лазерной техники и технологии уступает только информационным технологиям. Лазерные технологии – это современная робототехника и автоматика, оптика и физика, информационные технологии, конструирование и дизайн, это перспективная и востребованная профессия, самореализации в различных областях: организационноуправленческая, инженерная, научная. Лазерные технологии – это интересная и увлекательная работа в области высоких технологий, на предприятиях и в исследовательских центрах, занимающихся разработкой новых технологий, оборудования и материалов для авиа-, судо- и автомобилестроения, ракетнокосмической отрасли, в металлургии, в химической и нефтегазодобывающей промышленности не только в России, но и за рубежом. Такое применение и охват различных областей свидетельствует об актуальности данного направления, однако ввиду его высоких квалификационных требований к работникам возникает необходимость в профессионально-ориентационной работе и в комплексной подготовке кадров еще на ранних этапах образования.

Отличительные особенности программы обусловлена профессионально-ориентационным характером материала, уклоном в практическое применение полученных знаний и компетенций на базе высокотехнологичного оборудования, применяемого в современном производстве.

Адресат программы

Дополнительная общеразвивающая программа предназначена для детей в возрасте 15-18 лет.

Объем и срок освоения программы

Срок освоения программы – 8 месяцев.

На полное освоение программы требуется 34 часа.

Формы обучения

Форма обучения – групповая.

Особенности организации образовательного процесса

Программа предусматривает фронтальные, групповые, коллективные формы работы с детьми. Занятия могут проводиться: со всем составом учащихся, в малых группах, индивидуально. Состав групп 10-15 человек.

Режим занятий, периодичность и продолжительность занятий

Продолжительность занятий исчисляется в академических часах -45 минут, между занятиями установлены 10-минутные перемены. Недельная нагрузка на одну группу: 2 часа 2 раза в месяц.

Занятия проводятся в аудиториях и лабораториях образовательнонаучного кластера «Институт высоких технологий» БФУ им. И. Канта по адресу г. Калининград, ул. Генерал-лейтенанта Озерова, 57.

Педагогическая целесообразность

Настоящая программа ориентирована на преодоление наметившегося разрыва между общими и высшими учебными заведениями, а также между сферой образования и сферой высокотехнологичного производства, поэтому тематическое наполнение общего образования по физике дополняется теоретическим и практическим материалом, продиктованным требованиями современного производства, что и составляет педагогическую целесообразность и новизну настоящей программы.

Практическая значимость

Данная программа уникальна по своим возможностям и направлена на знакомство с современными технологиями и стимулированию интереса учащихся к технологиям конструирования и моделирования.

Ведущие теоретические идеи.

Ведущая идея данной программы — состоит в одновременном изучении как основных теоретических, так и практических аспектов лазерных технологий, что обеспечивает понимание инженерно-производственного процесса в целом.

Программа направлена на воспитание современных детей как творчески активных и технически грамотных начинающих инженеров, способствует возрождению интереса молодежи к технике, в воспитании культуры жизненного и профессионального самоопределения.

Освоив её обучающиеся смогут ознакомиться с потенциалом лазеров в современном мире, узнать, как они работают и какое будущее ждет специалистов в области лазерной оптики.

Цель дополнительной общеобразовательной общеразвивающей программы - формирование представления о сути лазерных технологий, перспективах, месте лазерных технологий в науке и производстве, задачах лазерных технологий и способах их решения.

Задачи:

Образовательные

- познакомить обучающихся с историей возникновения лазерной техники, лазерных технологий, а также с их сферами применения и научными областями, где они непосредственно задействованы;
- дать представление об устройстве лазера и физических явлениях, лежащих в основе его работы;
- познакомить обучающихся со строением и свойствами материалов, а также с принципами их взаимодействия с лазером;
- дать представление о составе и принципе работы лазерной технологической установки, а также о видах и способах лазерной обработки;
- познакомить обучающихся с основными понятиями аддитивных технологий и принципами управления технологическим процессом;
 - обучить основам подготовки 2D и 3D цифровых моделей изделий;
- дать представление о технике безопасности при работе на лазерных установках и устройствах 3D-печати.

Развивающие

- способствовать развитию творческого потенциала обучающихся, пространственного воображения;
 - способствовать развитию логического и инженерного мышления;
 - содействовать профессиональному самоопределению.

Воспитательные

- способствовать развитию ответственности за начатое дело;
- сформировать у обучающихся стремления к получению качественного законченного результата;
 - сформировать навыки самостоятельной и коллективной работы;
- сформировать навыки самоорганизации и планирования времени и ресурсов.

Принципы отбора содержания.

- взаимодействие педагога с ребенком на равных;
- использование на занятиях доступных для обучающихся понятий и терминов, следование принципу «от простого к сложному»;
- учет разного уровня подготовки детей, опора на имеющийся у обучающихся опыт;
- системность, последовательность и доступность излагаемого материала, изучение нового материала опирается на ранее приобретенные знания;
 - приоритет практической деятельности.

Программа обучения состоит из 6 тем:

- 1. Введение;
- 2. Создание и развитие лазерной техники;
- 3. Взаимодействие лазерного излучения с веществом;
- 4. Лазерные технологии обработки;
- 5. Лазерные технологические комплексы;
- 6. Основы подготовки 2D и 3D цифровых моделей изделий.

Начинается темы «Введение», где обучающиеся программа c познакомятся с историей возникновения лазерной техники и узнают основные области её применения. Следующая тема посвящена физическим явлениям, лежащим в основе действия лазера, составными частями лазера и их классификации. В теме № 3 будет подробно рассмотрена структура вещества и механизмы плавления и разрушения под действием лазера. В 4 теме обучающиеся изучат виды и способы лазерной обработки и принцип работы лазерной технологической установки. Следующая тема посвящена основным понятиям аддитивной технологии и работе 3D-принтера. В заключительной теме будет рассмотрены графический редактор в процессе подготовки 2D цифровых моделей изделий для лазерной установки и основы формирования цифровых моделей для 3D-принтеров.

Основные формы и методы

Для проведения занятий чаще всего используется комбинированная форма, состоящая из теоретической и практической частей.

- 1. Лекция;
- 2. Практическая работа;
- 3. Экскурсия.

Методы организации занятий:

При организации образовательных событий сочетаются индивидуальные и групповые формы деятельности и творчества. Занятия содержат теоретическую часть и практическую работу по закреплению этого материала.

Занятия условно разбиваются на 2 части:

1 часть включает в себя организационные моменты, инструктаж и изложение нового материала (теоретические занятия);

2 часть – практическая работа учащихся (индивидуальная или групповая, самостоятельная или совместно с педагогом, под контролем педагога). Здесь происходит закрепление теоретического материала, отрабатываются навыки и приемы, формируются успешные способы профессиональной деятельности.

Лекционные занятия составляют основу теоретического обучения и дают систематизированные основы научных знаний по программе, раскрывают состояние и перспективы развития лазерных технологий, концентрируют внимание обучающихся на наиболее сложных и узловых вопросах, стимулируют их активную познавательную деятельность.

Практические работы реализованы в виде непосредственной работы на лазерной установке, изучения принципа её работы, основных составных частей, механизмов плавления и разрушения материалов и т.д.

Планируемые результаты.

В результате освоения программы, обучающиеся должны знать:

- принцип работы лазера;
- технику безопасности при работе с оборудованием;
- основы подготовки 2D и 3D цифровых моделей;
- строение и свойства материалов, принципы их взаимодействия с лазером.

Уметь:

- пользоваться высокотехнологичным оборудованием;
- применять навыки общения в команде при выполнении практических работ.

Владеть:

- основными принципами управления технологическим процессом;
- основными понятиями аддитивных технологий.

Механизм оценивания образовательных результатов

1. Уровень теоретических знаний.

Низкий уровень. Обучающийся знает фрагментарно изученный материал. Дано менее 50% правильных ответов при прохождении опроса.

Средний уровень. Обучающийся хорошо знает изученный материал. Дано более 70% правильных ответов при прохождении опроса. Обучающемуся потребовалось время подумать над ответом в ходе опроса.

Высокий уровень. Обучающийся отлично знает изученный материал. Дано более 85% правильных ответов при прохождении опроса. Обучающийся быстро и четко отвечал на заданные вопросы в ходе опроса.

<u>2. Уровень практических навыков и умений.</u> Работа с лазерной установкой, техника безопасности.

Низкий уровень. Требуется контроль педагога за выполнением правил по технике безопасности;

Средний уровень. Требуется периодическое напоминание о том, как работать с лазерной установкой.

Высокий уровень. Четко и безопасно работает с лазерной установкой.

Формы подведения итогов реализации программы

Для выявления уровня усвоения содержания программы и своевременного внесения коррекции в образовательный процесс, проводится текущий контроль в виде контрольного среза знаний в конце каждой темы. Итоговый контроль проводится в виде контрольного опроса и практической работы.

Дополнительно обучающиеся могут участвовать в различных выставках, соревнованиях и конкурсах муниципального, регионального и всероссийского уровня.

По итогам освоения программы обучающимся выдается свидетельство об окончании обучения.

УЧЕБНЫЙ ПЛАН

(34 часа)

No	Название раздела, темы	Количество часов			Формы	
π/	-	Всего	Теория	Практика	Самостоятельная	аттестации/
П					подготовка	контроля
1.	Введение	3	2	1		опрос
2.	Создание и развитие лазерной техники	5	2	3		опрос
3.	Взаимодействие лазерного излучения с веществом	5	4	1		опрос
4.	Лазерные технологии обработки	8	4	4		опрос
5.	Лазерные технологические комплексы	8	4	4		опрос
6.	Основы подготовки 2D и 3D цифровых моделей изделий	5	3	2		опрос, итоговый опрос, практическое задание
7.	Итого	34	19	15		

СОДЕРЖАНИЕ ПРОГРАММЫ

(34 часа)

Тема 1. Введение (3 часа)

Теория. История возникновения лазерной техники и лазерных технологий. Области науки, связанные с лазерными технологиями. Области применения.

Практика. Экскурсия в лаборатории и знакомство с лазером.

Тема 2. Создание и развитие лазерной техники (5 часов)

Теория. Свет и его свойства. Физические явления, лежащие в основе действия лазера. Работа твердотельных и газовых лазеров в составе технологических установок гравировки и резки.

Практика. Основные составные части лазера и их назначение. Классификация лазеров.

Тема 3. Взаимодействие лазерного излучения с веществом (5 часов)

Теория. Строение и свойства материалов. Структура и свойства кристаллов. Разновидности кристаллов. Металлы и сплавы. Жидкие кристаллы. Структура полимеров, стекла и керамики. Поглощение, отражение, преломление света. Передача энергии. Нагрев твердых тел и жидкостей.

Практика. Механизмы плавления и разрушения материалов под действием лазерного излучения.

Тема 4. Лазерные технологии обработки (8 часов)

Теория. Виды и способы лазерной обработки. Сварка, резка, наплавка, гравировка и маркировка. Состав и принцип работы лазерной технологической установки. Специфика применения технологий для разных видов материалов.

Практика. Устройство лазерных технологических установок и установок лазерной резки и маркировки. Работа установок.

Тема 5. Лазерные технологические комплексы (8 часов)

Теория. Основные понятия аддитивной технологии, принципы формирования изделий. Лазерные технологии в аддитивном производстве. Принципы управления технологическим процессом. Автоматизированные комплексы.

Практика. Роботы в лазерной обработке. Устройство и работа 3D-принтера.

Tema 6. Основы подготовки 2D и 3D цифровых моделей изделий (5 часов).

Теория. Графический редактор в процессе подготовки 2D цифровых моделей изделий для лазерной установки. Основы формирования цифровых моделей для 3D-принтеров. Технологические возможности управляющего ПО и интерфейса установки. Технологические возможности управляющего ПО и интерфейса 3D-принтера.

Практика. Процесс подготовки цифровой модели изделия и ее реализация на установке. Цифровая 3D-модель изделия. Процесс печати изделия на принтере.

КАЛЕНДАРНЫЙ УЧЕБНЫЙ ГРАФИК (34 часа)

No	Месяц	Число	Время	Форма	Кол-во	Тема занятия	Место	Форма
Π /			проведения	занятия	часов		проведения	контроля
П			занятия					
1.	Октябрь			Теория	2	Введение	014, 208	опрос
1.	Октябрь			тсория	2	Введение	ауд.	опрос
2.	Октябрь			Теория,	2	Введение. Создание и	014, 208	опрос
				практика		развитие лазерной техники	ауд.	
3.	Октябрь			Теория,	2	Создание и развитие	014, 208	опрос
<i>3</i> .	октиорь			практика		лазерной техники.	ауд.	
4.	Ноябрь		Практика	2	Создание и развитие	014, 208	опрос	
	полера	Tipa		Tipuntimu	_	лазерной техники.	ауд.	
5.	Ноябрь			Теория	2	Взаимодействие лазерного	208 ауд.	опрос
	Пемера			Торы	_	излучения с веществом	200 tij A.	
6.	Декабрь			Теория	2	Взаимодействие лазерного	208 ауд.	опрос
				1		излучения с веществом	3 - 3/1	<u> </u>
						Взаимодействие лазерного	014 200	
7.	Декабрь		Теория,	2	излучения с веществом.	014, 208	опрос	
				практика		Лазерные технологии	ауд.	1
				T		обработки	014 200	
8.	Январь			Теория,	2	Лазерные технологии	014, 208	опрос
				практика		обработки	ауд.	
9.	Январь			Теория,	2	Лазерные технологии	014, 208	опрос
				практика		обработки	ауд.	OTT 0 0
10.	Февраль			Теория,	2	Лазерные технологии	014, 208	опрос
	_			практика		обработки Позории на такио пории	ауд.	опрос
11.	Февраль		Теория,	2	Лазерные технологии обработки. Лазерные	014, 208	опрос	
			практика		технологические	•		
				практика		Комплексы	ауд.	
				Теория,		Лазерные технологические	014, 208	опрос
12.	Март			практика	2	комплексы	•	onpoc
				практика		KOMILICKOBI	ауд.	

13.	Март	Теория, практика	2	Лазерные технологические комплексы	014, 208 ауд.	опрос
14.	Апрель	Теория, практика	2	Лазерные технологические комплексы	014, 208 ауд.	опрос
15.	Апрель	Теория, практика	2	Лазерные технологические комплексы. Основы подготовки 2D и 3D цифровых моделей изделий	014, 208 ауд.	опрос
16.	Май	Теория, практика	2	Основы подготовки 2D и 3D цифровых моделей изделий	014, 208 ауд.	опрос, практическое задание
17.	Май	Теория, практика	2	Основы подготовки 2D и 3D цифровых моделей изделий	014, 208 ауд.	итоговый, опрос, практическое задание

Организационно-педагогические условия реализации программы

Качество реализации дополнительной общеобразовательной общеразвивающей программы «Оптика лазеров» технической направленности обеспечивается за счет:

- доступности, открытости, привлекательности для детей и их родителей (законных представителей) содержания программы;
- наличия высокотехнологичной образовательной среды;
- наличия качественного состава педагогических работников, имеющих среднее профессиональное или высшее образование, соответствующее профилю преподаваемого учебного материала;
- применение современных педагогических технологий.

Кадровое обеспечение реализации программы.

Реализацию программы осуществляют квалифицированные специалисты, имеющие профессиональное образование в технической области.

Материально-техническое обеспечение реализации программы:

- 1. Учебная аудитория 2 шт.;
- 2. Компьютер 10 шт.;
- 3. 3D принтер Intamsys Funmat HT 1 шт.,
- 4. Лазерно-гравировальный станок SUKE SK-1325 1 шт.,

Информационное обеспечение реализации программы: учебноразвивающие программные среды – T-FLEX CAD 17, Microsoft Office.

Список литературы

Нормативные правовые акты:

- 1. Федеральный закон «Об образовании в Российской Федерации» от 29.12.2012 № 273-ФЗ.
- 2. Указ Президента Российской Федерации «О мерах по реализации государственной политики в области образования и науки» от 07.05.2012 № 599
- 3. Указ Президента Российской Федерации «О мероприятиях по реализации государственной социальной политики» от 07.05.2012 № 597.
 - 4. Распоряжение Правительства РФ от 30 декабря 2012 г. №2620-р.
- 5. Проект межведомственной программы развития дополнительного образования детей в Российской Федерации до 2020 года.
- 6. Приказ Министерства просвещения Российской Федерации от 09.11.2018 № 196 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам».
- 7. Постановление Главного государственного санитарного врача РФ от 28.09.2020 № 28 "Об утверждении санитарных правил СП 2.4.3648-20 "Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи".

<u>Литература, педагогические издания и методические материалы для педагога:</u>

1. Бертолотти, М. История лазера / М. Бертолотти ; пер. с англ. П. Г. Крюкова. - Долгопрудный : Интеллект, 2011. - 333 с., [4] л. ил., портр. - ISBN 978-5-91559-097-6 : 180.00 р. - Текст : непосредственный.

- 2. Тарасов, Л. В. Физика лазера / Л. В. Тарасов. 4-е изд. Москва : ЛЕНАНД, 2014. XVI, 439 с. Библиогр.: с. 423-421 (137 назв.). Предм. указ. в конце кн. ISBN 978-5-9710-1115-6 : 493.00 р. Текст : непосредственный.
- 3. Айхлер, Ю. Лазеры. Исполнение, управление, применение / Ю. Айхлер, Г. И. Айхлер; пер. с нем. Л. Н. Казанцевой. Москва: Техносфера, 2012. 495 с.: рис., табл. (Мир физики и техники; 2-25). Библиогр.: с. 489. Предм. указ.: с. 490-495. ISBN 978-5-94836-309-7: 608.30 р. Текст: непосредственный. 5-летию журнала "Фотоника" посвящается
- 4. Гибсон, Я. Технологии аддитивного производства. [Трехмерная печать, быстрое прототипирование и прямое цифровое производство] / Я. Гибсон, Д. Розен, Б. Стакер; пер. с англ. И. В. Шишковского. Москва: Техносфера, 2016. 646 с.: рис., цв. ил., табл. (Мир станкостроения; 18-1). Вариант загл.: Трехмерная печать, быстрое прототипирование и прямое цифровое производство. Библиогр. в конце гл. ISBN 978-5-94836-447-6. ISBN 978-1-4939-2112-6: 2080.10 р. Текст: непосредственный.

Тематические веб-ресурсы:

1. <u>Вейко В.П., Петров А.А. Введение в лазерные технологии</u> [Электронный ресурс]: опорный конспект лекций по курсу «Лазерные технологии». – СПб: СПбГУ ИТМО, 2009. – Режим доступа: http://books.ifmo.ru/book/442/

<u>Литература, педагогические издания и методические материалы для учащихся</u>

- 5. Бертолотти, М. История лазера / М. Бертолотти ; пер. с англ. П. Г. Крюкова. Долгопрудный : Интеллект, 2011. 333 с., [4] л. ил., портр. ISBN 978-5-91559-097-6 : 180.00 р. Текст : непосредственный.
- 6. Тарасов, Л. В. Физика лазера / Л. В. Тарасов. 4-е изд. Москва : ЛЕНАНД, 2014. XVI, 439 с. Библиогр.: с. 423-421 (137 назв.). Предм. указ. в конце кн. ISBN 978-5-9710-1115-6 : 493.00 р. Текст : непосредственный.
- 7. Айхлер, Ю. Лазеры. Исполнение, управление, применение / Ю. Айхлер, Г. И. Айхлер ; пер. с нем. Л. Н. Казанцевой. Москва : Техносфера, 2012. 495 с. : рис., табл. (Мир физики и техники ; 2-25). Библиогр.: с. 489. Предм. указ.: с. 490-495. ISBN 978-5-94836-309-7 : 608.30 р. Текст : непосредственный. 5-летию журнала "Фотоника" посвящается
- 8. Гибсон, Я. Технологии аддитивного производства. [Трехмерная печать, быстрое прототипирование и прямое цифровое производство] / Я. Гибсон, Д. Розен, Б. Стакер; пер. с англ. И. В. Шишковского. Москва: Техносфера, 2016. 646 с.: рис., цв. ил., табл. (Мир станкостроения; 18-1). Вариант загл.: Трехмерная печать, быстрое прототипирование и прямое цифровое производство. Библиогр. в конце гл. ISBN 978-5-94836-447-6. ISBN 978-1-4939-2112-6: 2080.10 р. Текст: непосредственный.

Тематические веб-ресурсы:

2. <u>Вейко В.П., Петров А.А. Введение в лазерные технологии</u> [Электронный ресурс]: опорный конспект лекций по курсу «Лазерные технологии». – СПб: СПбГУ ИТМО, 2009. – Режим доступа: http://books.ifmo.ru/book/442/

Ресурсы для повышения кругозора по направлению:

1. <u>Интернет журнал "ЛАЗЕРНЫЙ МИР", 2019 — Режим доступа:</u> https://xn--80akfo2a.xn--p1ai/